Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal.

نویسندگان

  • Mei-Li Hsieh
  • James A Bur
  • Qingguo Du
  • Sajeev John
  • Shawn-Yu Lin
چکیده

We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on [Formula: see text] than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Calculation of Resonant Frequencies and Modes of a Three-Atom Photonic Molecule and a Photonic Crystal in an External Cavity

In the present paper, resonant frequencies and modes of a three-atom photonic molecule and a photonic crystal placed within a cavity are numerically calculated. First, governing formulation in transverse electric field mode (TE) is obtained using Maxwell equations. Then, an algorithm based on a finite difference scheme and matrix algebra is presented. The algorithm is then implemented in a comp...

متن کامل

Localized light orbitals: Basis states for three-dimensional photonic crystal microscale circuits

We demonstrate the utility of three-dimensional 3D optical Wannier functions WF’s for quantitative description of electromagnetic wave localization and propagation in 3D photonic band gap PBG microcircuits. Using these localized “optical orbitals” we reconstruct electromagnetic waveguiding in bulk twodimensional 2D and 3D PBG materials, 2D-3D PBG heterostructures composed of 3D PBG structures i...

متن کامل

Add-Drop and Channel-Drop Optical Filters Based on Photonic Crystal Ring Resonators

Here, we propose an add-drop and a channel drop filter based on two-dimensional photonic crystal all circular ring resonators. These structures are made of a square lattice of silicon rods with the refractive index n1=3.464 surrounded by air (with refractive index n2=1). The broadest photonic band gap occurs at the filling ratio of r/a = 0.17. Two linear defect W1 waveguides couple to the ring....

متن کامل

Bloch modes and self-localized waveguides in nonlinear photonic crystals

We present a modeling technique that uses eigenmode expansion to simulate infinite periodic structures with Kerr nonlinearity. Using a unit cell with Bloch boundary conditions, our iterative algorithm efficiently calculates self-consistent two-dimensional Bloch modes. We show how it can be used to study the band structure of nonlinear photonic crystals and to gain rapid insight in the operation...

متن کامل

Local probing of Bloch mode dispersion in a photonic crystal waveguide.

The local dispersion relation of a photonic crystal waveguide is directly determined by phase-sensitive near-field microscopy. We readily demonstrate the propagation of Bloch waves by probing the band diagram also beyond the first Brillouin zone. Both TE and TM polarized modes were distinguished in the experimental band diagram. Only the TE polarized defect mode has a distinctive Bloch wave cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 27 41  شماره 

صفحات  -

تاریخ انتشار 2016